Highly Enantioselective Intramolecular Cyanoamidation: (+)-Horsfiline, (-)-Coerulescine, and (-)-Esermethole

Venkata Jaganmohan Reddy and Christopher J. Douglas*

Department of Chemistry, 207 Pleasant Street, SE, University of Minnesota, Minneapolis, Minnesota 55455

cdouglas@umn.edu

Received December 23, 2009

ABSTRACT

The first asymmetric cyanoamidation with synthetically useful enantioselectivity (ee up to 99%) to produce 3,3-disubstituted oxindoles is reported. Palladium catalysts with chiral phosphoramidite ligands activate the cyanoformamide C-CN bond, which is subsequently functionalized with a tethered alkene to give all-carbon quaternary stereocenters. The use of the *N*,*N*-(*i*-Pr)₂ derivative of octahydro-MonoPhos allowed the production of oxindoles with high enantioselectivities. Cyanoformamides bearing free N-H groups are now tolerated, potentially allowing protecting-group-free synthesis. Oxindole products of cyanoamidation are rapidly transformed into (+)-horsfiline, (-)-coerulescine, and (-)-esermethole.

Carbon–carbon σ bond (C–C) activation and functionalization of unstrained bonds is a burgeoning strategy for organic synthesis.¹ Much of the recent work in this area has focused on *aryl* nitriles, and independent reports of activation of organonitriles (C–CN) and asymmetric alkene cyanoarylation highlights this new strategy's potential in organic synthesis.² Less well developed is the catalytic activation of *cyanoformamide* C–CN bonds. These easy-to-prepare functional groups readily undergo C–C activation and allow the addition of amide and nitrile functional groups across alkenes or alkynes (cyanoamidation).³ While our study was underway,⁴ Takemoto reported a similar asymmetric cyanoamidation obtaining a maximum ee of 86% for oxindoles.⁵

ORGANIC LETTERS

2010 Vol. 12, No. 5

952-955

The synthetic potential of cyanoamidation for preparing indole alkaloids bearing all-carbon quaternary stereocenters⁶ (Figure 1) led us to continue pursuing conditions with synthetically useful enantioselectivities. We now report that cyanoamidation reactions can achieve enantioselectivities in *up to 99%* in the construction of all-carbon quaternary stereocenters, and

⁽¹⁾ Reviews: (a) Nájara, C.; Sansano, J. M. Angew. Chem., Int. Ed. 2009, 48, 2452. (b) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (c) Neças, D.; Kotora, M. Curr. Org. Chem. 2007, 11, 1566. (d) Murakami, M.; Eto, Y. In Activation of Unreactive Bonds and Organic Synthesis; Murai, S., Ed.; Springer-Verlag: New York, 1999; p 97.

⁽²⁾ Arylnitriles: (a) Watson, M. P.; Jacobsen, E. N. J. Am. Chem. Soc. **2008**, *130*, 12594. (b) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.; Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. **2008**, *130*, 12874.

^{(3) (}a) Kobayashi, Y.; Kamisaki, H.; Takeda, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. *Tetrahedron* **2007**, *63*, 2978. (b) Kobayashi, Y.; Kamisaki, H.; Yanada, R.; Takemoto, Y. *Org. Lett.* **2006**, *8*, 2711.

⁽⁴⁾ Our work was initiated in the Fall of 2007 and a portion of this study was previously disclosed: Reddy, V. J.; Douglas, C. J. *Abstracts of Papers*, 238th National Meeting of the American Chemical Society, Aug 16–20, 2009; American Chemical Society: Washington, DC, 2009; ORGN 669.

⁽⁵⁾ Yasui, Y.; Kamisaki, H.; Takemoto, Y. Org. Lett. 2008, 10, 3303. (6) Reviews: (a) Trost, B. M.; Jiang, C. Synthesis 2006, 369. (b) Christoffers, J.; Baro, A., Eds. Quaternary Stereocenters; Wiley-VCH Verlag GmbH & Co. KGaA : Weinheim, Germany, 2005. (c) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363.

Figure 1. Quaternary carbon-bearing indole alkaloids.

we report demonstrative syntheses of (+)-horsfiline, (-)-coerulescine, and (-)-esermethole with high enantioselectivity.

Our laboratory independently observed that catalytic Pd_2dba_3 , phosphoroamidite ligands, Lewis basic additives (HMPA, NMP, DMPU),⁷ and solvents THF or decalin cyclized cyanoformamide 1 to oxindole 2, presumably via intermediate 3 (Table 1).

Table 1. Optimization of Asymmetric Cyanoamidation^a

Me N ^{,Bn} O CN	Pd2dba3 solvent, additive	Me N- Bn O 3	$\begin{bmatrix} CN \\ L_n \end{bmatrix} \longrightarrow \begin{bmatrix} CN \\ CN \end{bmatrix}$	Me N Bn 2
entry	solvent	additive	yield	ee^b
1	THF	NMP	68%	90%
2^c	THF	DMPU	72%	94%
3	THF	HMPA	64%	91%
4	decalin	NMP	66%	89%
5	decalin	DMPU	68%	95%
6^d	THF	DMPU	70%	86%

^{*a*} Pd₂dba₃ (2 mol %), **L** (16 mol %), 100 °C. ^{*b*} Determined by HPLC (Chiralcel OD-H, *n*-hexane:IPA (9:1), $\lambda = 220$ nm) after column chromatography on silica gel. ^{*c*} Conditions in entry 2 were used for the remainder of the study. ^{*d*} **L** (8 mol %).

After examining the effects of the bidentate ligand BINAP and several commercially available monodentate phosphoramidites,⁸ we concluded that commercially available ligands would only give oxindole **2** with enantiomeric excesses in up to 86-91%, only slightly better than the previous study.⁵ Postulating that increasing ligand nitrogen substituent bulk and hydrogenating the BINOL backbone would improve selectivity, we prepared the *N*,*N*-(*i*-Pr)₂ derivative of octahydro-MonoPhos **L** in one step

using the corresponding phosphorochloridite and amine.⁹ To our delight, we were able to achieve enantiomeric excesses up to 94% using **L** with DMPU as an additive (entry 2). There was no longer a clear advantage in using decalin as solvent with \mathbf{L} ,⁵ so we adopted THF as a more convenient solvent for the remainder of our study. Reducing the amount of ligand **L** to 8 mol % decreased enantioinduction from 94% to 86% (entry 6).

Using our optimized conditions (Table 1, entry 2), we explored the formation of other oxindoles (Table 2). Cy-

Table 2. Enantioselective Preparation of Oxindoles^a

entry	substrate	product	vield ^b	ee ^c
1		Me Ne Me	72%	88%
2			48%	82%
3		Cy N Bn 9	68%	98%
4	Cy N ^{-H} 10 CN		53%	94%
5	TBSO N ^{Bn} 12 OCN	TBSO N Bn 13	80%	97%
6		TBSO N N Me 15	73%	94%
7	MeO 16 CN	MeO NeO N Bn 17	88%	99%
8		Meo Neo Neo Neo Neo 19	78%	98%
9			72%	98%

^{*a*} Conditions: Pd₂dba₃ (2 mol %), **L** (16 mol %), DMPU (1 equiv), THF (0.25 M in cyanoformamide), 100 °C. ^{*b*} Yields of product determined after silica gel chromatography. ^{*c*} Determined by HPLC, absolute configuration assigned in analogy to **25** (Scheme 1).

anoformamides were readily prepared from the corresponding amines, using either tetracyanoethylene oxide

⁽⁷⁾ We do not yet understand the role of these additives in asymmetric cyanoamidation.

⁽⁸⁾ Review on chiral monodentate phosphoramidites in asymmetric catalysis: van den Berg, M.; Minnaard, A. J.; Haak, R. M.; Leeman, M.; Schudde, E. P.; Meetsma, A.; Feringa, B. L.; de Vries, A. H. M.; Maljaars, C. E. P.; Willans, C. E.; Hyett, D.; Boogers, J. A. F.; Hubertus, H. J. W.; de Vries, J. G. *Adv. Synth. Catal.* **2003**, *345*, 308.

⁽⁹⁾ Preparation of L: Zhang, F.-Y.; Chan, A. S. C. Tetrahedron: Asymmetry 1998, 9, 1179.

(TCEO) and dimethyl sulfide¹⁰ or carbonyl cyanide.¹¹ Free N-H containing compounds gave comparable enantioselection to their protected congeners with only a moderate decrease in yield (entries 1-4). Additional protection/ deprotection steps might offset decreases in yield associated with utilizing free N-H compounds in multistep synthesis. Alkyl and silyloxymethyl ether substituents on the alkene gave good yields and enantioselectivity (entries 3-9). Adding a methoxy group *para* to the cyanoformamide (entries 7-9) increased yield and enantioselectivity compared to their hydrogen counterparts (entries 2, 5, and 7). Notably, our use of chiral ligand L during the cyanoamidation of 4 and 12 (entries 1 and 5) gave us much higher enantiomeric excesses compared to previous work, which used a commercially available ligand⁵ (88% vs 75%, and 97% vs 68%, respectively).

We assigned absolute stereochemistry of a cyanoamidation product via chemical correlation with (–)-esermethole (Scheme 1).^{2b} Beginning with ester **22**,¹² two methyl groups

Scheme 1. Assignment of Absolute Configuration via Chemical Correlation with (–)-Esermethole

were installed via alkylation with MeI. The resulting product was subsequently converted to the alkene via attack with excess MeMgBr followed by dehydration to form **23**. After installation of the cyanoformamide with carbonyl cyanide,¹¹ cyanoamidation provided the corresponding oxindole **25** (82%, ee 99%). LiAlH₄ reduction to the pyrrolidinylindoline system and reductive amination installing the *N*-methyl group (92%, 2 steps) completed the correlation with (–)-esermethole. The stereochemistry of the remaining cyanoamidation products was assigned in analogy to oxindole **25**.

We highlighted the synthetic utility of cyanoamidation in the total syntheses of (+)-horsfiline and (-)-coerulescine.^{13,14} A synthetic challenge of these alkaloids is the well-known, acid-promoted, racemization of the quaternary stereocenter via retro-Mannich/Mannich reactions (Scheme 2). Therefore,

Scheme 2. Acid-Promoted Retro-Mannich/Mannich Racemization of Horsfiline

enantioselective routes require endgame strategies avoiding the use of acid. In our approach, we envisioned that mesylates, such as **37/38** (Scheme 3), could be converted to the desired alkaloids in a one-pot chemoselective nitrile reduction, which would cascade with cyclization and reductive amination via **39/40**.

To realize the above approach, we began our syntheses with the N-Boc-protected 2-bromoanilines 26/27. Bocprotected bromoaniline 26 was produced in one step from the commercially available 2-bromoaniline, while 27 was available in two steps from commercially available 4-methoxyaniline.¹⁵ Preparation of alkenes **31/32** proceeded with use of a Pd-catalyzed Suzuki coupling¹⁶ of aryl boranes **28**/ 29 and iodoalkene 30.¹⁷ Boc-deprotection with TBSOTf in 2,6-lutidine generated the free anilines in 90% yield for both substrates. We then prepared the corresponding cyanoformamides using TCEO and dimethyl sulfide¹⁰ to give **33/34**. C-CN activation of cyanoformamides 35/36 provided the corresponding oxindoles bearing a C3 silyloxymethyl group with excellent enantioinduction. The silvl ethers (35/36) were deprotected with TBAF, and the resulting alcohols were converted to the corresponding mesylates (37/38). One-pot reductive cyclization to form the spirocyclic skeleton was readily accomplished by reaction of the nitriles with NaBH₄/ CoCl₂·6H₂O,^{18,19} followed by reductive amination upon addition of CH₂O. We obtained (-)-coerulescine (ee 91%) and (+)-horsfiline (ee 99%) in 54% and 49% yield from silvl

(19) Zhu, J.; Quirion, J.-C.; Husson, H.-P. J. Org. Chem. 1993, 58, 6451.

⁽¹⁰⁾ Linn, W. J. Org. Synth. 1969, 49, 103.

⁽¹¹⁾ Martin, E. L. Org. Synth. 1971, 51, 268.

⁽¹²⁾ Prepared via Fischer esterification of the 5-hydroxyanthranillic acid according to: Lippa, B.; Kauffman, G. S.; Arcari, J.; Kwan, T.; Chen, J.; Hunderford, W.; Bhattacharya, S.; Zhao, X.; Williams, C.; Xiao, J.; Pustilnik, L.; Su, C.; Moyer, J. D.; Ma, L.; Campbell, M.; Steyn, S. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 3081.

⁽¹³⁾ Prior enantioselective syntheses: (a) Trost, B. M.; Brennan, M. K. Org. Lett. **2006**, *8*, 2027. (b) Cravotto, G.; Giovenzana, C.; Pilati, T.; Sisti, M.; Palmisano, G. J. Org. Chem. **2001**, *66*, 8447. (c) Lakshmaiah, G.; Kawabata, T.; Shang, M.; Fuji, K. J. Org. Chem. **1999**, *64*, 1699. (d) Pellegrini, C.; Strässler, C.; Weber, M.; Borschberg, H. Tetrahedron: Asymmetry **1994**, *5*, 1975.

⁽¹⁴⁾ Syntheses of (±)-horsfiline or (±)-coerulescine: (a) Murphy, J. A.;
Tripoli, R.; Khan, T. A.; Mali, U. W. Org. Lett. 2005, 7, 3287. (b) Chang,
M. Y.; Pai, C.-L.; Kung, Y.-H. Tetrahedron Lett. 2005, 46, 8463. (c) Lizos,
D. E.; Murphy, J. A. Org. Biomol. Chem. 2003, 1, 117. (d) Selvakumar,
N.; Azhagan, A. M.; Srinivas, D.; Krishna, G. G. Tetrahedron Lett. 2002,
43, 9175. (e) Kumar, U. K. S.; Ila, H.; Junjappa, H. Org. Lett. 2001, 3,
4193. (f) Fischer, C.; Meyers, C.; Carreira, E. M. Helv. Chim. Acta 2000,
83, 1175. (g) Bascop, S.; Sapi, J. A.; Laroze, J.; Levy, J. Heterocycles 1994,
38, 725. (h) Jones, K.; Wilkinson, J. Chem. Commun. 1992, 1767.

⁽¹⁵⁾ Jensen, T.; Pedersen, H.; Bang-Anderson, B.; Madsen, R.; Jørgensen, M. Angew. Chem., Int. Ed. 2008, 47, 888-890.

⁽¹⁶⁾ Conditions adapted from the following: Garg, N. K.; Sarpong, R.; Stoltz, B. M. J. Am. Chem. Soc. **2002**, *124*, 13179.

⁽¹⁷⁾ Preparation of **30**: (a) Kamiya, N.; Chikami, Y.; Ishii, Y. *Synlett* **1990**, 675. (b) Nicolaou, K. C.; Li, Y.; Uesaka, N.; Koftis, T. V.; Vyskocil, S.; Ling, T.; Govindasamy, M.; Qian, W.; Bernal, F.; Chen, D. Y.-K. *Angew. Chem., Int. Ed.* **2003**, *42*, 3643.

⁽¹⁸⁾ Satoh, T.; Suzuki, S.; Suzuki, Y.; Miyaji, Y.; Imai, Z. Tetrahedron Lett. **1969**, 10, 4555.

Scheme 3. Total Synthesis of (+)-Horsfiline and (-)-Coerulescine

ethers **35**/**36**, respectively, with only one purification during the last three steps. The slight decrease in enantioselectivity from oxindole **35** to (-)-coerulescine is attributed to slight racemization, possibly during workup. Using our route, (-)coerulescine is available in eight steps from commercially available materials, while (+)-horsfiline is available in nine.

We have reported a catalytic asymmetric cyanoamidation of alkenes with excellent enantioselectivities. Free N–H groups are tolerated, allowing for future protecting-groupfree synthesis of alkaloids. The utility of cyanoamidation is exemplified by the syntheses of (–)-esermethole and spirocyclic alkaloids (+)-horsfiline and (–)-coerulescine. Our synthesis of (+)-horsfiline is similar in length to Trost's^{13a} and Palmisano's^{13b} recent routes to (–)-horsfiline, while circumventing some of the chemoselectivity and diastereoselectivity issues they encountered. Future work on additional asymmetric cyanoamidation-based strategies for the synthesis of alkaloids is ongoing.

Acknowledgment. We thank the University of Minnesota (UMN) for start-up funds, Prof. Andrew Harned (UMN) for use of a shared HPLC, and Ms. Rosalind P. Douglas (UMN) for assistance in manuscript preparation.

Supporting Information Available: Experimental procedures, ¹H and ¹³C NMR spectra for new compounds, and HPLC chromatograms for chiral compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL902949D